
ELSEVIER 

Available online at www.sciencedirect.com 

S C I E N C E ~ D I R E C T  ® APPl,.I Ell3 
M A T H E M A T I C S  

A N D  M E C H A N I C S  

www.elsevier.com/locate/jappmathmech 

Journal of Applied Mathematics and Mechanics 69 (2005) 13-26 

CHAOTIC MODES OF OSCILLATION OF 
A VIBRO-IMPACT SYSTEMt 

S. G. K R Y Z H E V I C H  a n d  V. A.  P L I S S  

St Petersburg 

e-mail: kryzh@comset.net 

(Received 18 February 2004) 

The motion of a point mass on a spring with friction and with the condition of absolutely elastic impact against the arresting 
devices is investigated. The sufficient conditions for chaotic oscillations are derived analytically for the problem considered. The 
mechanism by which such oscillations arise is described. © 2005 Elsevier Ltd. All rights reserved. 

The existence of chaotic modes for different vibro-impact systems has recently been established [1, 
Section 2.4; 2-13]. but in the majority of cases this has been proved numerically. An exception to this 
is the investigation of the dynamics of a ball, bouncing on a vibrating table [1, Section 2.4]. The 
mathematical model of this problem is a discrete dynamical system in which the instant of time 
corresponding to the impact and the rate of impact are chosen as the state variables. The mapping which 
specifies the dynamical system places in correspondence to this pair of variables a pair corresponding 
to the next impact in time. It has been shown that for the system considered there is a so-called "Smale 
horseshoe" [14-16], which ensures chaotic behaviour of the solutions. However, the application of this 
approach to the problem considered involves considerable difficulties. 

Below we describe a new method for the analytical investigation of the behaviour of the solutions 
of systems with an impact. We choose the classical variables, namely, the coordinate of the point and 
its velocity, as the phase variables. We will show that solutions corresponding as close as desired to the 
initial data can have a different number of impacts in a time interval equal to the period of the system 
considered. It is shown that this fact implies the presence of a Smale horseshoe. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

The generalproperties o f  the system. Consider the motion of a point mass along a straight line under the 
action of a linear recovery force, a linear resistance of the medium and a piecewise-constant periodic 
stimulating force. We will assume that the point considered impacts absolutely elastically against an 
arresting device (a stop). The motion of such a point is described by the equation 

1, if t e  [0, T l) 
±'+2e~C+x = f ( t ) ;  f ( t )  = -1,  if t e  [Tj, T) (1.1) 

Suppose f ( t )  is a periodic function of period T = T1 + T2, defined in the half-interval [0, T) with the 
above form. Equation (1.1) is specified when x > 0, and the condition for an absolutely elastic impact 
is expressed as follows: if X(to) = 0 while 2(t0 - 0) ___ 0, then/:(to + O) = -2(to - 0); if X(to) = O, 
2(t0 - 0) = 0 and k T  + Tt <- to < (k + 1)T, thenx(t) = 2(t) = 0 when to -< t _< (k + 1)T. Henceforth we 
will assume that e e (0, 1), T2 > 3Tt, and the quantity T 1 is a large parameter. In addition to Eq. (1.1) 
we will consider the equivalent system 

= y, ~ = - 2 E y - x +  f ( t )  (1.2) 
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We will asSume that system (1.2) is specified in the region 

A = {(x ,y)~  R2:x>O}kJ{(O,y) :y>_O} 

This system or Eq. (1.1) with the indicated impact conditions will be called systemA. As follows from 
results obtained earlier [17], for any to, x0, andy0, satisfying the conditions (x0, Y0) ~ A, the solution of 
systemA with the initial conditionsx(t0) = xo, y(to) = Y0, is defined for all t, uniquely and continuously 
by the initial data for all values of t such that x(t) ;~ O. 

We will show that the system considered is dissipative. Consider the positive-definite quadratic form 

W(x, y) = x z + y2 + 2exy 

For any solution (x(t) ,y(t))  of systemA the function w(t) = W(x(t) ,y( t))  is continuous, including at the 
impact points. We will consider its derivative by virtue of the system 

W = - 2ex 2 - 2ey 2 - 4e2xy + 2y f ( t )  + 2ex f ( t )  = - 2eW + 2 f ( t ) ( y  + ex) 

Hence it follows that an R > 0 exists such that l~ < 0 if W > R. Then, all the solutions of system A 
fall inside the compactum 

-Z e = {(x, y) e ~2 W(x, y) < 2R} 

and remain there over time. 
The behaviour of the solutions of the system in finite time intervals is determined by the sign of its 

right-hand side. Consider the equations 

£ + 2 e ~ + x  = 1 (1.3) 

J (+2E~+x = -1 (1.4) 

with the same impact conditions. The vibro-impact systems obtained will be called system B and system 
C respectively. We will conditionally further assume that all the numerical quantities denoted by the 
letters c and C, are positive constants. We will call the functions a(t) and b(t), defined on the ray, 
[to, + ~ )  equivalent (a(t) - b(t)), if a t 1 >_ t o exists such that c l a ( t )  I - [b(t) I --- C la(t) [ for any t > t 1. We 
will also use the following standard notation: a(t) = o(b(t)), if a(t)/b(t) ---) O, and a(t) = O(b(t)), if 
la(t) l <- Clb( t ) l .  

In Sections 2 and 3 we will obtain auxiliary results regarding the behaviour of the solutions of system 
B and C respectively; in Section 4 we will investigate how the solutions of one system transfer into the 
solutions of another at instants of time when the right-hand side changes sign; in section 5 we will 
construct a set containing all the non-stray points of the Poincar6 mapping of system A and, finally, in 
the last section we will investigate the structure of the set of non-stray points and we will show that this 
set contains a Smale horseshoe. 

2. THE B E H A V I O U R  OF S O L U T I O N S  IN SECTI ONS IN W H I C H  f ( t )  = 1 

The solutions of system B in the intervals between impacts had the form 

x(t)  = 1 + (A - 1 ) exp ( - e ( t -  to))COS(V(t - to)) + 

+ Bexp(-E(t - /0))  sin (v(t - to)) 

v = J l - e  2, A = X(to), n = (y( t  o+O)+ex( to ) ) l v  

(2.1) 

It can be seen that the equilibrium position x = 1 of system B is asymptotically stable, while all the 
remaining solutions of the system converge to this equilibrium position as t ~ + ~ .  This is clear for 
the solutions of Eq. (13), while for system B it follows from the fact that when there is an impact the 
distance from the point (0,y0) to the point O1 = (1, 0) does not change wheny0 is replaced by -Y0- Since 
system B is autonomous, we can speak of its trajectories. 
We will denote by F those of them which pass through the point O - the origin of coordinates. Suppose 
P = (0,yl) is the point of last transversal intersection of F with the Oy axis and Do is a closed set, bounded 
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by the arc OP of the curve l? and the section of the @ axis. We extend r in the direction of decreasing 
time to the next intersection with the x = 0 axis at the point E = (0, yZ). We take a point M = (0, -yi) 
symmetrical to P with respect to the origin of coordinates, and we define D as the closed region bounded 
by the arc ME of the curve r and the corresponding section of the Oy axis. It is clear that Do C D. All 
the solutions beginning inside the region Int&, have no impacts as time increases. The solutions which 
begin in the region Int(D\Do) have exactly one case of impact, after which they fall in the region Int& 
(see Fig. 1, where the constructions indicated above are given for E = 0.1). 

Suppose x(t, x0, yo) is a solution of the Cauchy problem for system B with initial data (0, ~0, ~0). We 
define the mapping 

F,(qb Yo) = (-dT ,r x0, Yo), w, + 0, XOY Yo)) 

If the value of Tl is fairly high, the restriction F1 ID of the mapping F1 to the set D is continuous and 
F,(D) c Do. Since the solutions of system B with initial data from Do have no impacts as the time 
increases, for any point zl, 2 E Do, the following limit holds 

dist(F,(zo), Fi(z,)) 5 Cexp(-aT1)dist(zo, zi) 

3. THE BEHAVIOUR OF THE SOLUTIONS IN SECTIONS IN 
WHICH f(t) = -1 

System C also has exactly one fixed point, namely, the origin of coordinates, but the phase portrait of 
this system differs from the focus. In Fig. 2(a) we show part of the trajectory of system C, corresponding 
to E = 0.2 and the initial conditionsx(0) = 0.8 and1(0) = 0. 

Lemma 1. System C has a unique equilibrium position - the point 0, the origin of coordinates. Any 
solution of system C approaches zero with time. 

Proof. Consider the function 

v = x2+2x+y2+2exy 

It is positive definite in the Set A. Note that for any solution (x(t), y(t)) of system C the function u(t) = 
V(x(t), y(t)) is continuous in t, including at impact points. We will calculate its derivative according to the system 
considered 

ti = - 2EY2 - 2&X - 2ex2 - 2e2xy 

Hence -FEZ) < i, < -EZ). Hence, u(t) = O(exp(--Et)) and exp(-2ti) = O(u(t)), if a(t) 5 0. 

We define F2 as the Poincare mapping for system C during the time T2. We will trace how the distance 
between the points changes under the mapping F2. We fix a certain non-zero solution z(t) of system C, 
beginning at t = 0 in a small neighbourhood of the point Oi = (1, 0). Note that, by virtue of Lemma 
1, the solution z(t) in any finite time interval has a finite number of impacts. Suppose tk, k E N are the 
instants of the impacts and yk = y(tk + 0). 
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The following result gives an asymptotic estimate of the rate at which the solution of system C 
approaches zero with time. 

L e m m a  2. For any neighbourhood B C D of the point O 1 and any z(0) e B 

yk/y l  = exp(-e(t  k -  tl)(2/3 + o(1))) 

where the quantity o(1) approaches zero uniformly with respect to z(0) as k ~ ~o. 

Proof. Consider the function 

U(x, y) = (x + 1 )2 + y2 + 2ey(x  + 1) 

(3.1) 

At the same time 

Hence, Eq. (3.2) can be rewritten in the form 

2 
Y~ + ] - 2eYk + I + i 

We will introduce the following notation 

The following estimates hold 

~)i~ = Yk - -Yk+l ,  Ak = t k+l - - t k ,  Xk = 

t l : +  l 

I x( t )dt  
I k 

2 2 3 3 O(A4)  1 - ( J k  = 2eAk-2e A k+4e Ak/3 = 

Zk+ I 

Yk+i +Y~ = I (1 +2eJc( t )+x( t ) )d t  = Ak+X t 
I k 

We will estimate the last term in formula (3.5) 

u ( t k +  I - O) = O k U ( t  k + 0 ) ,  Ok = e x p ( - - 2 ~ ( t k  + I -- tk))  (3 .2 )  

x( t  k) = x(tk+ I) = O, Y(tk+O) = Yk, Y(tk+l+0) = -Yk+l 

2 
= ak(y k + 2ey k + 1) (3.3) 

t Xk = f d t fds  Yk+ ( -  1-eg(~)-x('C))d'c = y~Ak/22 _AJ63 + O(A 4) 
t k t k ~ l k 

(3.4) 

(3.5) 

(3.6) 

The derivative of the function U is equal to -2~U by virtue of Eq. (1.4). Fixing the solution z(t) = (x(t), y(t)) of 
system A, we consider the function u(t) = U(x(t), y(t)). Then if t k and tk + 1 are neighbouring instants of impact, 
we have 
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On the other hand, we can similarly obtain that 

2 3 4 
Xk = Yk + I Af f2 -  Aft6 + O(A t) (3.7) 

Taking the ha!f-time of Eqs (3.6) and (3.7) and substituting it into Eq. (3.5), we obtain 

2 3 4 
Yt+ t +Yt = At + At(Yt + Y t + l ) / 4 - A f f  6 + O(At) 

whence we finally have 
3 4 

Yt+ t + Yt = A~ + Affl2 + O(At) (3.8) 

Subtracting Eq. (3.7) from Eq. (3.6), we conclude that 

fit = O(A~) (3.9) 

Moreover 

3 4 
2Yt = Yt + Yt+ l + at = 8k + At + Affl2 + O(Ak) (3.10) 

It follows from Eq. (3.3) that 

2 2 2 = (1 - 6 t ) ( l  + 2 e y k + y k ) - 2 e ( y t +  1 +Yt)  (3.11) Yk --Yk+ ! 

Substituting expressions (3.4), (3.8) and (3.10) into Eq. (3.11) and changing the sign, we obtain, taking relation 
(3.9) into account, 

8tAt (2eA t 2 2 4eaA~/3)(1 + - 2 e  A t + e ( S t  + 2 = Ak) + Aft4) - 
3 4 2 3 3 3 4 

- 2e(A t + Affl2) + O(At) = 2e At8 t -  2e Aft3 + eAff3 + O ( A t )  

Transferring 2E2Ak~k to  the left-hand side and cancelling against A~(1 - 2e2), we obtain that 

2 3 
8 t = ea t~3  + O ( A t )  (3 .12)  

if e ~ 1/ff2. For e = 1/~r2 relation (3.12) is obtained by taking the limit. Note thatyg = Aft2 + O(A2). 
The equivalent form of Eq. (3.12) 

Yt+ I = Yt - ~ik = Yt( 1 - 2eAff3 + O(A~)) 

can be written in the form 

lnyt + t - lnyt = - 2eAff3 + ~t, ~k = O(A~) (3.13) 

Summing Eqs (3.13) we obtain 

l n y  n - l n y ~  = - 2 e ( t  n -  q ) 1 3  + ~1 + ~2 + . . .  + ~ n -  I 

For arbitrary ~ > 0 we choose a constant C(o) such that the following limit is satisfied 

~1 + 6 2  + "'" + ~ n - I - - <  C ( O ' ) + f f ( A  I + A 2 +  ...  + A n _ l )  = C ( f f ) + O i ( t n - t l )  

Then 

lnyn- lnyl  2 [ C(t~) 
t n - t t  ~e]< , +O t n - t I 

This also indicates that Eq. (3.1) holds. 

We will investigate how the Curve F divides parts  of  the trajectories of  system C into intervals be tween  
impacts .  

Suppose  L is an arc of  the t ra jectory of  system C passing in the ne ighbourhood  of  the origin of  
coordina tes  and cor responding  to the interval  be tween  two successive impacts.  We will deno te  by 
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A -+ = (0 ,y] )  the points of intersection of the a rcL  with the Oy axis, such thaty~ > 0 > y.~. As follows 
from Lemma 1, y ]  ~ 0 as T2 ~ +oo andy~ = -y~ (1 + o(1)). In the neighbourhood of the origin of 
coordinates the curve F is given by the equation x = ~(y), while the arc L is given by the equation 
x = l(y).  In this cases "/and l are in fact CLsmooth functions, defined in the section [y~,y~] and satisfying 
the following conditions 

~'(0) = l(Y-A) = l(Ya) = )"(0) = 1 ' (0)= 0, ~/(y~)>0, 1(0)>0 

and finally ~/'(y) > 0, while l"(y)  < 0 for anyy ~ [y~, y~ ]. This means that if the quantity T2 is sufficiently 
large, the arc L and the curve F intersect at exactly two points B- = (XB, y~)  and B ÷ = (x~, y~), where 

+ 

xB>O,  Y~t<YB <0<yS+ <yA÷ 

(see Fig. 2b, where we show the mutual position of the curve F and the arc L). 

L e m m a  3. I f X  = (h, 0) is the point of intersection of the arc L with the Ox axis, then 

• ÷ - -  . ÷ - -  . + + 

h m y a / y  a = h m y n / y  n = -1;  hmyA/y  B = ~ as h---)0 (3.14) 

Proof. The solution of system B with initial conditions 

x(0) = y(0) = 0 

in the neighbourhood of the origin of coordinates can be represented in the form 

y = t + O ( t 2 ) ,  x = t 2 / 2 + O ( t  3) 

Consequently, in the neighbourhood of the origin of coordinates 3'(Y) = y2/2 + O(y3). The solution of system C 
with initial conditions 

x(O) = h, y (O)= 0 

can be written as follows: 

whence it follows that 

y = - t + O(t2), x = h -  t212 + O(t 3) 

l(y) = h-y212 +O(y 3) 

The quantitiesyj are the roots of the function L, and consequently 

+ 

YA = ± ~ + o f ~ )  

while the quantities y~ are the solutions of the equation l(y) = y(y). Hence 

+2 h -y~B212+ O(y 3) YB / 2  = 

Theny~ = ---4, which proves that formulae (3.14) hold. 

We will investigate how the distance between the solutions of system C vary with time. Suppose 
zi(t) = (xi(t), yi(t))  (i = 1, 2) are the solutions of system C. Suppose L i are the trajectories of the points 
Pi = zi(to), Li  are the closures of Li, while L~ are the corresponding positive half-trajectories. Clearly 

dist(zi( t) ,  L3=i) ~ dist(zi(to), L3_i )exp( -e ( t -  to)), i = 1, 2 (3.15) 

i.e. the trajectories of any two points approach each other exponentially as t increases. Suppose 
L1 = L2 = L and p is the arc of the trajectory L, connecting the pointspl  adp2 (possibly disconnected). 
We will call the curvilinear integral 

d r ( p l ,  P2) = ~dst. (3.16) 

P 
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the distance between the po in t sp l  andp2  along the trajectory L, i.e. the length of  the arc 9. If L1 ~ L2, 
we will call the quanti ty 

d±(Pl, P 2 )  = min(dist(pl ,  i,2), dist(p2, L1)) 

the distance be tween the po in t sp l  andp2 in a perpendicular  direction. For  each of  the pointspi  we will 
consider 7, - the section of  the normal  at the pointp i  to the trajectory L i. We will de te rmine  the distance 
be tween the po in t sp l  andp2  along the t rajectory from the formula  

dr(pl ,  P2) = min(d'l(PJ, P2), d'z(Pl, P2)) 

! 

di(Pl, P2) = min dr(p¢, q3-i), i = 1, 2 

Note  that since the pointspi  and qi lie on one  trajectory, the distances dT(pi, qi) are found from formula 
(3.16). 

Lemma 4. For  any two solutions Zl(t ) and z2(t ) of  system C, such that  zi(to) Pi E D (i = 1, 2), we 
have the relat ions 

[dr(z,(t),zz(t)) a2, a22 IIIIdr(pl, p2)ll 

aii = aii(t, Pl, P2) - e x p ( - e ( t -  to)), i = 1, 2 

a21 = a 2 1 (  t, P l ,  P 2 )  = exp ( - e ( t - t o ) ) ( l l 3  + o(1))  

Proof 1. Suppose L x = L 2. We will assume thatp2 = zl(to + &Px) for Certain 8 > O. We will denote by t~ and t 2 
z .1 2 1 the corresponding successive instants of impacts, t~ = yi(ti~ - 0). Then t~ = tk + 8 for any k e ~]. If t ~ [t~, t~) for 

any k ~ ~,  we have 

cexp(-e(t - t0))dist(p I , P2) < dist(q (t), z2(t)) -< Cexp(-e(t  - t0))dist(p I, P2) 

and let [t 1, then 

dist(zu (t), z2(t)) - Ykl 

as long as mini = x, 2(t~ + 1 - -  t~) > 8. Moreover, for any t 

dr(el (t), z2(t)) - dr(p1, P2)exp(-e( t -  to)) (3.17) 

2. Suppose L1 * L2. Letpi be points on the trajectories Li, and let zi(t ) = (x( t ) ,  y(t)) be solutions of system C 
T with initial conditions zi(O) = pi(i = 1, 2). We will assume that d3(px, P2) = 0. We will say that the half-trajectory 

+ + 1 1 1 2 Lx is external with respect to L2 i f  y l  = yl(tl) > y( t2)  = tl .  Without loss of generality we will assume that the half- 
trajectory L~ is external. In intervals where both solutions Xl( t  ) and x2(t  ) do not have impact points, 

dist(q (t), Zz( t ) )  - dist(q (to), z2(to))exp(-e(t- to)) 

i and t} + 1 as neighbouring instants of impacts for the solution Xi(t ). Suppose Consider tj 

i yk =Yi(tk+O); i =  1 ,2 ,  k = j , j + l  

We put 

• I t~) ,  x 2 j +  = max(tj+ j, I) x I = mm(tj, 1 t2 

In the section [% z2] the distance dr(zfft), z2( t ) )  varies by 

pj = 2dX/yJ(I +o(1 ) )  (3.18) 
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where the time intervals between neighbouring impacts and also the lengths of the arcs between impact points are 
less for the internal trajectory. The solution zz(t), going along the internal trajectory, into the section Ix1, z2] overtakes 
the solution zl(t), going along the external trajectory, i.e. 

Y2(X2) - Yl (x2) > Y2(Xl ) - Yl ('el) 

We will estimate how the distance dT(zl(t), z2(t)) varies in the section T2. We fix O _< 7"2 and consider the time 
interval I = [O - 1, O]. We introduce the function 

~.( t ) - .exp ( e.t l 3 ) 

By virtue of Lemma 2 the ratesy~ of impacts of the solution xl(t) satisfy the relation 

I 
Yk = ~.(-20( 1 + o( 1 ))) (3.19) 

which is a consequence of relation (3.1), if we put t 1 = 0 in the latter. At the same time, as was shown above, the 
length of the section of free motion can be represented in the form 

1 ! 1 
t k + l - t  k = 2 Y k ( l + o ( l ) )  

It follows from the last formula and relation (3.19) that the number of impacts corresponding to the solutionxl(t) 
in the section I can be estimated from the formula 

N(O) = ~.(20(! +o(l)))  

From this formula, taking expression (3.18) into account, we obtain 

pj = ~.(40(1 +o(l)))d-L(Zl(tj),Z2(tj)) = ~L(O(I +o(l)))d±(ppp2) 
tie [O-I,O] 

Suppose O0 is the least integer strictly greater than T2. Then 

O0 
Pj< ~ P j=  ~ X(k(l +o(1)))d±(ppp2) = X(T2(l +o(1)))d±(pl, p 2) 

l i e  [0, T2] t i e  [0, O0] k =  I 

On the other hand, 

Consequently 

X PJ> X PJ = ~'(T2(I +°(1)))d±(PJ , P2) 
tie [0, T 2] tj~ 10, O0-1] 

X PJ = ~'(T2(I +°(1)))d'I'(pI'P2 ) (3.20) 
tj ~ [0, T 2 ] 

The assertion of Lemma 4 follows from formulae (3.15), (3.17) and (3.20). 

4. S W I T C H I N G  I N S T A N T S  

At the instant of time t = T1 the right-hand side of system A changes sign from plus to minus. At the 
same time, as was shown above, diamFl(Do) - exp(-ET1). We will denote by Gl(x, y) the vector field 
generated by system B, and we will denote by G2(x, y) the vector field generated by system C. For the 
latter system the point O1 will not be a singular point. It can be seen that G2(01)][ Ox. 

We will put 

F(z) = F2(FI(Z)), z ~  A 

The mapping is a bisection, continuous at all points of the set D, apart from the inverse image of the 
straight line x = 0, and differentiable at all points of continuity, apart from the arc of the curve F serving 
the boundaries of the sets D and D 0. This follows from the fact that any non-zero solution of system C 
as well as any solution of system B, the initial data of which does not lie on F, corresponds to the case 
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when the impacts occur only with non-zero velocity. Hence, the locally mapping F can be represented 
in the form of the composition of a finite number of smooth Poincar6 mappings: from the initial point 
to the first impact, from the first impact to the second .. . .  , and from the penultimate impact to the last 
and, finally, from the last impact to the image of the initial point. By virtue of Lemmas 1 and 2 for any 

> 0 we obtain a number To such that if T1 --- To, then 

F ( D ) c Q  = {(x ,y)"  exp(-(413+~)ET2) < V ( x , y ) < e x p ( - ( 4 / 3 - ~ ) e T 2 ) } c D  (4.1) 

It can be seen that for sufficiently large T2 all the non-stray points of the mapping F are points of 
the set Q. Then, 

= max "~. G2(x,y), Ox = O(exp(-eTi)  ) (4.2) 
(x,y)~ FI(Q) 

Here and henceforth .¢ is the angle between two smooth directed curves which vary in the section 
[0, 

For systemB, on the other hand, O1 is a singular point of the focus type, and the directions of the 
corresponding vector field at points of any neighbourhood of the point O1 can be arbitrary. Tangents 
to the trajectories of the system will be parallel to the Ox axis at points of the Oy axis and 0nly at these 
points. We will fix 7 ~ (0, ~t/2). Consider two sectors 

S l = { (x ,y ) : l x - l l>c tgT ly l} ,  S 2 = {(x ,y) ' lx - l l<c tg~ , ly [}  (4.3) 

(see Fig. 3, where the sectors Sa and S 2 a re  constructed for a value of y - arctg0.25, and we also show 
trajectories of systems B and C corresponding to e = 0.1). 

Quantities a~(7) and ~2(7) exist such that ~i(7) = 7 + 0(7) and 

"ft. Gl(x,y) ,  Ox~O~l(~g), if ( x , y )~  S~ 

G l(x, y), Ox > ~2(T), if (x, y) ~ S 2 (4.4) 

It follows from formulae (4.2) and (4.4) that 

Gl(x ,y ) ,G2(x ,y )<oq(T)+ ~, if ( x , y )~  S I 

"ft. Gl(x ,y) ,G2(x,y)>o~2(T)-  ~, if (x,y)  e S 2 

Suppose P l andp2 are points of the set Q. Suppose 7 is the angle between the trajectories of systems 
B and C at the pointpl, measured in a positive direction, d~ is the distance between the p0intspl and 
Pz along the trajectories of system B, d27"is the distance between the pointspl andp2 along the trajectories 
of system C, and ± dl, 2 are the corresponding distances in the perpendicular directions. Then 

d2 r = (d rcosT+d{sinT)( l+o(1)) ,  d~ = - d l  rs inT+d{cosTi( l+o(1))  

where we mean by 0(1)quantities which approach zero asp2 -~Pl. 
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As regards the behaviour of the trajectories at the instants of time when the right-hand side f of 
Eq. (1.1) changes sign from minus to plus, it can be seen that 

g. G l (x, y), G2(x, y) - n = o(exp(- 2eT2/3 + ~;T2) ) 

for any point (x, y) e Q. 

5. L O C A L I Z A T I O N  O F  THE ATTRACTION 

In this section we contract the set Q in such a way that the new set, as previously, contains all the non- 
stray points F. Since, as was shown above, all the solutions of systemA, as time passes, fall in the region 
D and F(D) C Q, all the non-stray points of the mapping F belon~to Q. Note that if T2 is sufficiently 
large, then Q c D and, consequently, F(Q) c Q. The sets Qk = F (Q) form a sequence of imbedded 
compacta Q D Q1 D Q2 D .. . .  We will put 

Q** = Qo ~ Q I ~ Q2... 

The set of non-stray points of the mapping F is then contained in Q~. 
Suppose the following inequality is satisfied for a certain g > 3 

T21T I > tl (5.1) 

We will assume TI is so large that, in the definition of the set Q (formula (4.1)), we can put 

< min( 11100, (g - 3)/100) 

We will denote by a the minimum angle between the trajectories of system B and C in the set FffD) 
(note that it depends exclusively on T1 and e). By virtue of Lemma 4 the overall length S(F(Q)) of the 
projections of the components of connectedness of the set F(Q) onto the Oy axis is the quantity 

sin~exp (eT2( 1/3 + o( 1 )) - cT1)diam Q (5.2) 

We fix a certain number M > 10. If T1 is fairly large, we can estimate a lower bound of the quantity 
(5..2) by the expression Msin~diamQ. For M we obtain values of 70 and T O such that if T1 > T U, 
FI(Q) C Sz and in the definition of the sector $2 (formula (4.3)) 7 > 70, then Msin~ > 10. Then 

S(F(Q)) > 10diamQ (5.3) 

and the number of connectedness components of the set F(Q) themselves is less than 10. Note that the 
0 greater the value of T1 that is chosen the smaller we can take the quantity 7o, so that estimate (5.3) 

remains true. 
We will now investigate for what condition FI(Q) c $2. We will introduce p and ~ - polar coordinates 

in the plane with centre at the point (1.0). It follows from formulae (2.1) that the time interval between 
successive intersections of the Oy axis by the solution of Eq. (1.3) is equal to n/v. Moreover, for any 
such solution ~ -  1. For points of the set Q the following relation holds 

~ - 3 M 2  = O(exp(-4(1 +~)1~T2/3) ) 

The time Of the last intersection in the interval [0, T1] of the sector S 1 by the solutions of system B and 
the initial data from (x(0), y(0)) = (x0, Y0) e Q has an upper limit estimate of ~0 = C70. It follows from 
the above that if the quantity T 1 is sufficiently large and in this case 

r , ,  k--0k 12V2P_   -o, d l - 2  (5.4) 

condition (5.3) holds (we recall that v = ~ 1 - e 2). 
We will estimate the values of the function Vin the set F(Q). The diameter Q is estimated to have 

an upper limit of 2exp(-2/3 + ~/2)eT2). Then the diameter FI(Q) is estimated to be Clexp(-2/3 + 
~2)~T 2 - ~T1). We put 
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8 = C I exp((-5/3 + ~)8T 2 -eTl ) ,  Z = Cl exp((- 113 + ~)£T 2 - e T j )  (5.5) 

It follows from the above that the constant Ca can be chosen in such a way that we obtain a point 
q ~ FI(Q) and a section lq of the trajectory Lq of system C such that the length lq is not greater than Z 
and the whole set F(Q) lies in the 6-neighbourhood of the section lq. At point of lq the values of the 
function V may differ by a factor of no more than exp(2eZ), which follows from Lemma 1. The value 
of the function V at each point of the set F(Q) differs from the value at the closest point of the set Iv 
by no more than 26. 

Thus, for any two pointspl, 2 ~ F(Q) the following limit holds 

V(p l) < V(p2)exp(2e~¢ ) + 4~i (5.6) 

On the other hand, F(Q) C Q, and for any point of the set Q the corresponding value of V lies in the 
range 

I U = [exp(-(4/3 + ~)eT2), exp(-(4/3 - ~)eT2)] 

Hence, from formula (5.6) we can also obtain that if the value of T1 is fairly large, we obtain a number 
V0 ~ I~ and a C2 > 0 such that 

V o <_ V(p)  <_ V o + CEeXp((- 5/3 + 3~)eT 2) = V~ (5.7) 

for any point p ~ F(Q). We recall that by increasing T1 we can make the parameter ~ > 0 as small as 
desired. 

6. THE N O N - T R I V I A L  H Y P E R B O L I C  SET OF N O N - S T R A Y  POINTS 

If the parameter T 1 is sufficiently large, the F curve intersects the curve given by the condition V(x, y) = 
V0 at two point Z + = (x +, y+) and Z- = (x-, y-), where y- < 0 < y+. We will define H C A as the set of 
points p = (x, y) which satisfy condition (5.7) and such that y - <  0 <y+. Clearly F(H) C Q, and the 
mapping F [ H  is smooth in the neighbourhood of any point of continuity. In this case, in the whole set 
Q the mapping F is expanding along the trajectories and contracting in a certain transverse direction. 
Hence, F [H is a local diffeomorfism in the neighbourhood of points of continuity. We will denote by 
2 ± sections of the boundary of the set H, specified by the conditions 

+_ 
y = y ,  V o<_V(x,y) ,V l 

Supposep ~ F(H) n H. We will denote byzp(t) the corresponding solution of systemA. We substitute 
into the corresponding pointp the number n(p) of impacts corresponding to the solution Zp in the interval 
[-T, 0]. Suppose N1 is the minimum value of n(p) in the set F(H) n H, and N2 is the maximum value. 
We put N = N2 - Na + 1 and for anyj = 1 . . . .  , n consider the sets 

Hj = {p ~ F(H)  r~ H: n(p)  = j + N l - 1 } 
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Note that all the sets Hj are compact and that 

F ( H )  n H = H l f)  . . .  N H N 

(see Fig. 4, where we show the Smale horseshoe for system A for N = 6). 

L e m m a  5. Suppose 11 is the curve representing the image of the continuous mapping h : [0, 1] ~ H, 
such that h(0) ~ ~+, h(1) ~ 2-. Then the set F(ri) intersects the set/4j for anyj  ~ {2, . . . ,  N -  1}, and 
for anyj  ~ {3, . . . ,  N -  2} the intersection of the sets F(ri) and Hj contains the curve rij, which possesses 
the same properties as ri. 

Proof. For any pointp ~ H there is a point q ~ 11 such that 

dist(p, q) < C2exp((- 5/3 + 3~)eT 2) 

Then the distance from an arbitrary point F(H) to the nearest point of the set F(rl) can be estimated to have 
an upper limit of 

exp ( ( -  4/3 + 4 ~ ) £ T  2 - ET I ) = o ( ~ V 0 )  

At the same time the quantity ~ sets a lower limit on the length of the projection of any of the sets Hj onto 
the Oy axis. It follows that the distance along the trajectories of system C from an arbitrary point of the set F(H) 
to the nearest point of F(q) is not greater than half the length of the projection of H2. This also indicates that the 
assertion proved is correct. 

We will show that the number N increases without limit as 7"1 increases. We will conditionally assume 
that the curve ri0, given by the conditions V(x, y)  = Vo and y ~ [y-, y+], is directed along decreasing 
values of the variabley. Suppose l is the length of this curve. As follows from the above, the sum of t h e  
lengths of the components of the curve F(ri °) is equal to 

sin~exp(eT2(l  + o(1))/3 - e T l ) l  

At each point the direction of the curve F(ri °) is close to the direction of the vector field of system C, 
whence it follows that the length of each component of connectedness ofF(rl  °) is estimated to have an 
upper limit of CI. This means that the number N of connectedness components increases without limit. 
It follows from the assertion of Lemma 3 that N >_ 10"f2 > 6, if limit (5.3) holds. 

L e m m a  6. If the value of the parameter T1 is sufficiently large, then for any m ~ N and any set of 
numbers a = (a0, . . . ,  am), such that 3 < aj < N -  2 for anyj  = 0, . . . ,  m, the set 

H a = Hao n F-I(Ha,)  n ... c3 F-m(H,m) 

is non-empty. 

Proof. We fix the subscript a. It follows from Lemma 5 that the image of the curve of 11 ° considered above contains 
the curve rla0 ~ H~ 0, connecting b + and b-. Applying Lemma 5 to the curve of rla0, we obtain that the curve rla0~, C 
FO]ao ) n Hal exists. In the final analysis we obtain the curve rla 0 ...... C H(am)  n ...  n Fm(Hao). Then the assertion 
of the lemma follows from the fact that F-mTlao . . . . .  C H a. 

We put 

K = n F~(H) 
n m - ~  

Obviously the set K is invariant under the mapping F, compact and non-empty, like the intersection of 
the imbedded compacta (the intersections of a finite number of iterations of the compactum/4) .  
Moreoverl K C F-I(H),  and consequently the set K is not intersected by the inverse image of the Oy 
axis. Hence, we obtain a neighbourhood ~2 of the set K such that F[ n is a diffeomorfism. 

To each po in tp  ~ K here corresponds the unique sequence 

a ( p ) = {  .... a2 ,  a_l, ao, al, a z . . . .  }, a n = { 2  . . . . .  N - l ) ,  n~77 
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such that F~(p) E Ha, for any n ~ Z. It follows from Lemma 6 that for any sequence a one can Choose 
a corresponding point p. Note that, by virtue to the fact that the diffeomorfism F is hyperbolic in the 
neighbourhood of the set K the pointp e K is uniquely defined by the sequence a(p). I fN  > 6, the set 
of possible values of aj is not less than 2, and the set K has a power continuum. A shift of the sequence 
a(p) by unity to the left corresponds to the mapping F. Hence, the mapping FIK possesses the same 
properties as the famous Smale horseshoe, namely: 

(1) the mapping FIK has an infinite number of periodic points; 
(2) the periodic points F are always dense in K; 
(3) a pointp ~ K exists, the orbit of which {/~(p) : n ~ 7/} is everywhere dense inK. 
Thus, the following assertion holds. 

Theorem For any e e (0, 1), (So > 0 and g > 3 a ;P > 0 exists such that if T1 > 2P, conditions (5.1) 
and (5.5) hold, and then the mapping F has a hyperbolic invariant set K with properties 1-3. 

Hence, we have shown that system A has a compact hyperbolic invariant set containing an infinite 
number of periodic solutions and an everywhere dense trajectory. Such sets are often called chaotic 
sets. It can be seen that the set Q= introduced above is an attractor. The chaotic set is, of course, 
contained in this attractor. These attractors are often called strange attractors. Thus, we have shown 
that the vibro-impact system A has a strange attractor. 

In Fig. 5 the set of values of the parameters T1 and T2 corresponding to chaotic oscillations is shown 
hatched. 
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